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Abstract

A chemo-mechanical model for a finite-strain elasto-viscoplastic material containing multiple chemical components is
formulated and an efficient numerical implementation is developed to solve the resulting transport relations. The numerical
solution relies on inverting the constitutive model for the chemical potential. In this work, a semi-analytical inversion for
a general family of multi-component regular-solution chemical free energy models is derived. This is based on splitting the
chemical free energy into a convex contribution, treated implicitly, and a non-convex contribution, treated explicitly. This
results in a reformulation of the system transport equations in terms of the chemical potential rather than the composition
as the independent field variable. The numerical conditioning of the reformulated system, discretised by finite elements, is
shown to be significantly improved, and convergence to the Cahn–Hilliard solution is demonstrated for the case of binary
spinodal decomposition. Chemo-mechanically coupled binary and ternary spinodal decomposition systems are then investigated
to illustrate the effect of anisotropic elastic deformation and plastic relaxation of the resulting spinodal morphologies in more
complex material systems.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The main goal of modern materials science is the theory-guided tailoring of materials, including chemical
composition and microstructure, in order to obtain improved properties for a sustainable technological development.
While there has been a tremendous growth over recent years in the use of modelling and simulation tools towards
this goal [1–4], the realistic prediction of the thermo-chemo-mechanical interactions relevant to industrial processes
is still a key development required to enable technological advances in material design, manufacturing and product
development for harsh-service environments. It is recognised that the interaction of solute diffusion and elasto-
plastic deformation plays a prominent role in the microstructural evolution and the subsequent performance in a
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wide range of materials [5–7]. Among the full-field simulation alternatives, the phase-field method is particularly
well-suited to model coupled microstructure evolution [8–13]. It has been successfully applied to describe many
thermo-chemo-mechanical processes including solidification [14], precipitation [15–17], fracture [18–21] and
dislocation motion [22–24]. Further methodological developments including chemo-mechanical interface modelling
and homogenisation have been treated recently in [25]. However, the majority of chemo-mechanical phase-field
investigations are limited to linear elastic mechanics [10]. Until very recently, only few works have been carried
out to fully couple the chemo-elasto-plastic processes in a thermodynamically consistent framework [20,21,26,27].

The use of diffuse-interface models to describe interfacial phenomena dates back to Cahn and Hilliard [28].
The original Cahn–Hilliard (CH) equation was used to model spinodal decomposition in binary alloys, but has
since been extended to multi-component systems and coupled with microelasticity [11,29–32]. A critical challenge
in simulating the thermodynamics of multi-component chemo-mechanical systems is the numerical approximation
of a generally non-convex chemical free energy. Numerical methods have been developed to solve such systems
using finite difference [33], mixed finite element with composition and chemical potential treated as independent
fields [34,35], isogeometric [36] and spectral [37] spatial discretisations. In the context of numerical time-integration,
the stability, robustness and efficiency of the resulting solution algorithm is sensitive to the non-convexity of
the chemical free energy. A successful approach in this regard is the splitting of the chemical free energy
into concave and convex components, which are then approximated separately [38,39]. In particular, splitting
methods have recently been applied to the multi-component, multi-phase CH equation with a generalised non-
convex Landau energy [40,41]. In the context of a mixed finite-element-based weak formulation of the classic CH
relation, Gomez and Hughes [35] employed a chemical energy splitting approach based on the sign of the fourth-
order derivatives of the underlying energy functional. A recent mixed weak formulation of chemo-mechanics for
two-phase, two-component finite-deformation gradient elastic solids based on unconditionally stable, second-order
accurate time-integration and Taylor expansion of the non-convex energy has been given by Sagiyama et al. [42].

More recently, starting from a grand potential functional [43,44], the transport relations have been formulated
for multi-component and multi-phase systems [45]. In such an approach, the thermodynamics of the system is set in
a grand canonical ensemble and formulated in terms of the chemical potential. As a result, boundary and interface
conditions based on the chemical potential [46], needed for a realistic representation of macroscopic systems where
the total number of particles cannot be fixed, are naturally incorporated. However, these approaches are based
on a Legendre transformation, which does not exist for more general non-convex forms of the chemical free
energy. In this work, a convex splitting of the chemical free energy is instead used to invert the multi-component
chemical potential–composition relation. This results in an expression for component transport in terms of the
chemical potential rather than the chemical composition, analogous to the grand potential approach, but applicable
to more general forms of the chemical free energy. This paper is organised as follows: the basic model formulation
for a single phase elasto-viscoplastic solid is presented in Section 2, followed by an outline of its numerical
implementation in Section 3. In particular, since a dissipation potential exists for the flux-force relations of the
current model, the corresponding initial boundary-value problems (IBVP) can be formulated with the help of rate
variational methods [47–49]. In Section 4 representative examples are used to benchmark and compare the proposed
method with conventional transport relations. A summary is provided in Section 5 along with perspectives for future
applications.

2. Model formulation

2.1. Basic relations

Let B0 ⊂ R3 be a microstructural domain of interest, with boundary ∂B0. Attention is restricted in this work to the
case of a single-phase elasto-viscoplastic solid mixture of M diffusing chemical components. Component diffusion
and reaction in the mixture are modelled as usual by the corresponding component mass or number balance relations

ċm = − Div jm + σm, for m = 1, . . . ,M, (1)

in the mixture in terms of component (mass or number) concentration 0 ≤ cm ≤ 1, the corresponding flux density
jm , and the corresponding specific supply-rate, σm . Assuming that the mixture is closed with respect to constituent
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mass or number, the corresponding sum relations

1 =

M∑
m=1

cm , 0 =

M∑
m=1

jm , 0 =

M∑
m=1

σm, (2)

and (1) imply
∑M

m=1 ċm = 0.
Besides this, the deformation resulting from an applied loading defines a field χ (x) : x ∈ B0 → y ∈ B mapping

points x in the undeformed configuration B0 to points y in the deformed configuration B. Following Shanthraj et al.
[21], the total deformation gradient, given by F = ∂χ/∂x = ∇χ , is multiplicatively decomposed as

F = Fe Fc Fp, (3)

where Fp is a lattice preserving isochoric mapping due to plastic deformation, Fc represents the local deformation
due to solute misfit, and Fe is a mapping to the deformed configuration. In the current approach the stress relaxation
due to the component diffusion process is captured through the stress-free deformation gradient, Fc.

Restricting attention to isothermal and quasi-static processes with no external supplies of momentum or energy,
the balance relations for linear momentum, angular momentum, and internal energy, are given by

0 = Div P , PTF = PFT , ε̇ = P · Ḟ, (4)

where, P is the first Piola–Kirchhoff stress, and ε is the referential internal energy density. As well the balance
relation,

η̇ = θ−1δ − θ−1 Div
M∑

m=1

µmjm + θ−1
M∑

m=1

µmσm, (5)

for the entropy holds (e.g., [50, Chapter 2]), with dissipation-rate density, δ, absolute temperature, θ , and the
chemical potential, µm , of component m.

Combination of (1)–(5) yields the form

δ = P · Ḟ +

M−1∑
m=1

µ̃m ċm − ψ̇ −

M−1∑
m=1

jm · ∇µ̃m (6)

for the dissipation-rate density in terms of µ̃a := µa −µM , and the free energy density of the mixture, ψ := ε−θη.
The current model formulation is based on the basic constitutive form

ψ
(
F,Fp,Fc, cm, c̃m,∇ c̃m

)
= ψe

(
F,Fp,Fc

)
+ ψc (cm, c̃m,∇ c̃m) , (7)

for ψ in terms of elastic, ψe, and chemical, ψc, parts. A non-local field, c̃m for independent components, m =

1, . . . ,M − 1, is introduced to weakly enforce any dependence of the energy on chemical inhomogeneity through
its gradient ∇ c̃m [51]. Modelling P and µ̃m as purely energetic, i.e. work conjugate to F and cm respectively, results
in the constitutive relations

µ̃m = ∂cmψ + ∂Fcψ · ∂cm Fc , P = ∂Fψ. (8)

Together, (6)–(8) result in the residual form

δ = −∂Fpψ · Ḟp −

M−1∑
m=1

jm · ∇µ̃m (9)

for the dissipation-rate density.

2.2. Energetic constitutive relations

The elastic energy, ψe, is modelled here relative to the intermediate configuration by the form

ψe(F,Fp,Fc) =
1
2

Ee · CEe, (10)
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in terms of the Green–Lagrange strain measure

Ee =
1
2

Fc
T (

Fe
TFe − I

)
Fc, (11)

and anisotropic elastic stiffness C. The work conjugate second Piola–Kirchhoff stress is given by,

S = CEe. (12)

The 1st Piola–Kirchhoff stress tensor, P, is then related to S through

P = Fe Fc S Fp
-T. (13)

Further details are provided in [4].

2.2.1. Crystal plasticity
The plastic deformation gradient is given in terms of the plastic velocity gradient, Lp, by the flow rule

Ḟp = LpFp, (14)

where Lp is work conjugate with the Mandel stress in the plastic configuration,

Mp = −∂FpψFp
T

= (FeFc)TFeFcS ≈ Fc
TFcS, (15)

assuming small elastic strains. A crystal plasticity model is used, where the plastic velocity gradient Lp is composed
of the slip rates γ̇ α on crystallographic slip systems, which are indexed by α

Lp = ḞpFp
−1

=

∑
α

γ̇ α sα ⊗ nα, (16)

where sα and nα are unit vectors along the slip direction and slip plane normal, respectively [52,53]. The slip rates
are given by the phenomenological description of Peirce et al. [54],

γ̇ α = γ̇0

⏐⏐⏐⏐τ αgα

⏐⏐⏐⏐n

sgn (τ α) , (17)

in terms of the reference shear rate γ̇0, and strain-rate sensitivity exponent n. The slip resistances on each slip
system, gα , evolve asymptotically towards g∞ with shear γ β (β = 1, . . . , 12) according to the relationship

ġα = γ̇ β h0
⏐⏐1 − gβ/g∞

⏐⏐a
sgn

(
1 − gβ/g∞

)
hαβ, (18)

with parameters h0 and a. The interaction between different slip systems is captured by the hardening matrix hαβ .
The plastic dissipation rate density −∂Fpψ · Ḟp appearing in (9) can then be reduced to the simpler slip system

based form

− ∂Fpψ · Ḟp =

∑
α

τ α γ̇ α, where τ α = Mp · (sα ⊗ nα). (19)

On this basis, non-negativity of γ̇0, g∞, h0 and hαβ is sufficient to ensure non-negative plastic dissipation.

2.2.2. Multi-component chemo-mechanics
Following Hüter et al. [55], the local deformation arising from volumetric mismatch between solute components

is given by

Fc = exp
M−1∑
m=1

νmcm I ≈ I +

M−1∑
m=1

νmcm, for
M−1∑
m=1

νmcm ≪ 1 (20)

where the volumetric mismatch coefficient, νm , is related to the Vegard’s coefficient, i.e. νm = Vm/aM , where Vm

is the Vegard’s coefficient for component m dissolved as a solid solution in a matrix of component M , and aM is
the lattice parameter of the matrix.
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The chemical energy, ψc, is modelled here using the following regular solution form

Ωψc(cm, c̃m,∇ c̃m) =

M−1∑
m=1

E sol
m cm +

M−1∑
m,n=1

E int
mncmcn + Rθ

M∑
m=1

cm ln cm

+
1
2

M−1∑
m=1

αm (cm − c̃m)
2
+

1
2

M−1∑
m=1

κm |∇ c̃m |
2
, (21)

where Ω is the molar volume; E sol
m , κm and αm are respectively the solution energy, gradient coefficient, and penalty

parameter to weakly enforce cm = c̃m , for component m; E int
mn is the interaction energy between component m and

n; and R is the universal gas constant. The non-local field c̃m satisfies c̃m − λ2
m Div ∇ c̃m = cm [51, Equation (19)]

with λ2
m = κm/αm . This relation is equivalent to the equilibrium relation

0 = δc̃mΩψc = Ω
(
∂c̃mψc − Div ∂∇ c̃mψc

)
= αm (c̃m − cm)− Div κm∇ c̃m . (22)

from (21). Following Onsager [56], a linear flux-force form is assumed for the component diffusion,

jm = −Mm∇µ̃m, (23)

with Mm the component mobility in the lattice-fixed frame of reference, and chemical potential, µ̃m , given by

Ωµ̃m = E sol
m +

M−1∑
n=1

E int
mncn + Rθ ln

cm

cM
+ αm (cm − c̃m)− Ωνm

(
Fc

TS
)
· I. (24)

On this basis, non-negativity of Mm is sufficient to ensure non-negative dissipation due to component diffusion.

3. Numerical methods

The constitutive model introduced in Section 2 has been implemented in the freeware material simulation kit,
DAMASK [4], and a large-scale parallel finite element (FE) code using the PETSc numerical library [57] has been
developed to handle the discretisation and numerical solution of the coupled field equations.

3.1. Rate variational formulation of the initial boundary-value problems

The following represents a special case of the variational treatment of combined Cahn–Hilliard and Allen–Cahn
modelling of finite-deformation gradient elastic solids in [58].

As detailed in [47], a rate-variational-based formulation of the IBVPs is contingent in particular on the existence
of a dissipation potential for the model in question. In the current case, the force-based form

d =
1

n + 1

∑
α

gα γ̇0

⏐⏐⏐⏐τ αgα

⏐⏐⏐⏐n+1

+
1
2

M−1∑
m=1

∇µ̃m · Mm∇µ̃m, (25)

of this potential, d, determines the fluxes γ̇ α = ∂ταd and jm = −∂∇µ̃m d, consistent with (17) and (23), respectively.
The convexity of d in the forces, and its non-negativity d ⩾ 0, together imply δ ⩾ 0 in the context of (9). Besides
this potential, the rate-variational formulation is based on the energy storage-rate density, ζ , and the supply rate
density, ps. For the current model, this is given by

ζ :=

M−1∑
m=1

(
µ̃m ċm + ∂c̃mψ

˙̃cm

)
+ ∂∇χψ · ∇χ̇ −

∑
α

τα γ̇α, ps =

M−1∑
m=1

µ̃mσm . (26)

Together, these determine the volumetric part of the rate functional

P =

∫
B0

pv dx +

∫
∂Bf

0

pf ds , where pv = ζ + d + ps. (27)
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The flux boundary conditions on ∂Bf
0 is given by pf. The first variation of P with respect to µ̃m , χ̇ , ˙̃cm , and τα

takes the form

δP =

M−1∑
m=1

∫
B0

δµ̃m pvδµ̃m dx +

M−1∑
m=1

∫
∂Bf

0

(
∂∇µ̃m pv n∂B0 + ∂µ̃m pf

)
δµ̃m ds

+

∫
B0

δχ̇ pvδχ̇ dx +

∫
∂Bf

0

(
∂∇χ̇ pv n∂B0 + ∂χ̇ pf

)
δχ̇ ds

+

M−1∑
m=1

∫
B0

∂ ˙̃cm
pvδ ˙̃cm dx +

∑
α

∫
B0

∂τα pvδτα dx (28)

via integration by parts and the divergence theorem. Necessary for stationarity, δP = 0, of (28) are the weak forms
for the field relations∫

B0

∂∇χψ · ∇δχ̇ dx −

∫
∂B0

∂χ̇ pfδχ̇ ds = 0,∫
B0

[
(ċm − σ) δµ̃m + Mm∇µ̃m · ∇δµ̃m

]
dx = 0,∫

B0

[
αm (cm − c̃m) δc̃m + κm∇ c̃m · ∇δc̃m

]
dx = 0, (29)

and constitutive relation 0 = −γ̇ α + ∂ταd .

3.2. Finite element implementation

The rate-variational formulation yields the weak form of the field relations required for their finite-element (FE)
implementation. In particular, Eq. (29) yields directly the weak momentum balance relation

0 =

∫
B0

∇δχ̇ · Pdx, (30)

where pf = 0 is assumed for simplicity, the weak multi-component transport relation∫
B0

[
(ċm − σ) δµ̃m + Mm∇µ̃m · ∇δµ̃m

]
dx = 0, (31)

and the weak non-local relation∫
B0

[
αm (cm − c̃m) δc̃m + κm∇ c̃m · ∇δc̃m

]
dx = 0. (32)

where δχ̇ , δµ̃m and δ ˙̃cm are the virtual deformation rate, chemical potential and non-local concentration fields
respectively. No-flux boundary conditions are assumed for the sake of simplicity.

The deformation field, χ (x), chemical potential, µ̃m (x), and non-local concentration field, c̃m (x), in addition
to their virtual counterparts are discretised using a FE basis of shape functions, Nχ

i , Nµ

i , N c̃
i , N δχ̇

i , N δµ

i , and N δc̃
i ,

where [χ ]i , [µ̃m]i , [c̃m]i , [δχ̇ ]i , [δµ̃m]i , and [δc̃m]i are the respective degrees of freedom. The corresponding discrete
differential operator matrices are Bχ

i , Bµi , Bc̃
i , Bδχ̇i , Bδµi and Bδc̃i . Under these approximations, the weak form Eqs.

(30) to (32) can be rewritten as∑
i

[δχ̇ ]T
i

∫
B0

[Bδχ̇i ]T Pdx  
Rmech

i

= 0, (33)

∑
i

[δµ̃m]T
i

∫
B0

[
[N δµ

i ]T (ċm − σm)+ [Bδµi ]T MmBµi [µ̃m]i

]
dx  

Rchem
i,m

= 0, (34)
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∑
i

[δc̃m]T
i

∫
B0

[
[N δc̃

i ]Tαm

(
cm − N c̃

i [c̃m]i

)
+ [Bδc̃i ]T κmBc̃

i [c̃m]i

]
dx  

RNL
i,m

= 0, (35)

which defines a non-linear system of equations for the unknowns [χ ]i , [µ̃m]i , and [c̃m]i . A time-discrete system of
equations is obtained by using a backward Euler approximation

ċm =
cm(tn) − cm(tn−1)

△t
(36)

of the rate ċm in Eq. (34).
The solution approach followed in this work involves solving the coupled system of Eqs. (33) to (35) within a

staggered iterative loop until a self consistent solution is achieved for a time increment.

3.3. Chemical potential solution

The solution of the coupled system of Eqs. (33) to (35), for the deformation field, χ , chemical potential, µ̃m ,
and non-local concentration field, c̃m , requires the inversion of Eq. (24) in order to express cm := cm(µ̃n) for
m, n = 1, . . . ,M − 1. This is achieved algorithmically in the current work through a semi-implicit splitting of the
chemical potential relation,

µ̃m(tn) = µ̌m̃(tn) + µ̂m̃(tn−1), (37)

into a convex

Ωµ̌m̃(tn) = E sol
m + Rθ ln

cm(tn)
cM (tn)

+ αm (cm(tn) − c̃m)− Ωνm
(
Fc

TS
)
· I, (38)

and non-convex, i.e.,

Ωµ̂m̃(tn−1) =

M−1∑
n=1

E int
mncn(tn−1), (39)

contribution. Eq. (38) can then be inverted to express cm(tn) in terms of Eqs. (37) and (39), yielding,

cm(tn) =

exp
(

fm−αm cm (tn )
Rθ

)
1 +

∑M−1
n=1 exp

(
fn−αncn (tn )

Rθ

) , (40)

where

fm = Ωµ̃m(tn) − E sol
m + αm c̃m + Ωνm

(
Fc

TS
)
· I. (41)

Eq. (40) is an implicit system of equations to be numerically solved for cm(tn) for a given set µ̃n(tn). A fixed point
iteration is employed, which is unconditionally convergent for αm ≥ 0 as the fixed point operator, i.e. the RHS in
Eq. (40), is guaranteed to be a contractive mapping.

4. Results and discussion

In this section, the developed chemo-mechanical model for multi-component finite-strain elasto-viscoplastic
materials is validated, benchmarked and showcased through illustrative examples. Simulations of spinodal de-
composition in the absence of mechanical deformation are firstly performed to study the accuracy, convergence
and numerical performance of the new proposed numerical scheme for the CH model. Then, we use the fully
coupled chemo-elasto-viscoplastic model to investigate the combined effects of diffusion, elastic stressed and plastic
relaxation on the spinodal decomposition and coarsening.

4.1. Validation and benchmarking of the numerical scheme

Diffusion simulations in the absence of mechanical deformation are first performed to study the convergence,
accuracy and performance of the proposed numerical scheme for the CH model.
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Fig. 1. Influence of the solute volumetric mismatch coefficient, ν1, on the free energy, ψ , for ν1 = 0.01, 0.03, and 0.05. It is assumed that
the volumetric mismatch among solute components is accommodated by elastic deformation.

4.1.1. Convergence behaviour
A non-local concentration field, c̃, is introduced in the current model to account for the gradient energy

contributions, thereby reducing the strong fourth-order CH PDE to two weakly coupled non-local second-order
PDEs. The equivalence between the two methods is weakly enforced through the introduction of a penalty term. The
convergence of the proposed method to the CH solution is discussed in this section. To investigate the effect of the
penalty parameter, α, the gradient coefficient, κ , and the mesh size on the equilibrium numerical solution, we study
one-dimensional (1-D) diffusion simulations without mechanical deformation. Since a semi-implicit time splitting
method is proposed in this work to invert the non-convex chemical potentials relations, the influence of the time
steps on the temporal accuracy of the numerical solutions is also studied in this section. Parameters for the chemical
free energy density function in Eq. (21) are taken as Ω = 1 × 10−5 m3 mol−1, E sol

1 = 1.24 × 104 J mol−1, E int
11 =

−1.24×104 J mol−1, θ = 498 K, κ1 = 1×10−16 J m2 mol−1,M1 = 2.2×10−22 m5 s−1 J−1 and the penalty parameter
α1 is varied from 4 × 103 to 2.5 × 106 J mol−1. The resulting spinodal compositions are cα = 0.07 and cβ = 0.93,
respectively. The chemical free energy without mechanical deformation of the studied system is represented by the
black curve in Fig. 1. The minima in the double-well free energy curve represent the binodal compositions resulting
from the decomposition of an initial homogeneous mixture. The inflection points of the free energy curve represent
the spinodal below which spontaneous decomposition can occur.

The 1-D domain, B0 = [0, 2L], is initialised into two regions, Bα = [0, L) and Bβ = (L , 2L]. The initial
concentrations for these two regions are taken as cα = 0.49 and cβ = 0.51, respectively, and the system size,
2L = 3 µm. To investigate the spatial convergence of the numerical solutions with mesh refinement, we discretise
the domain with meshes varying from 60 to 2400 regular hexahedral elements and use a fixed time step of ∆t =

5 s. The temporal accuracy of the proposed formulation is studied by refining the time step from ∆t = 100 s to
∆t = 2 s using a fixed mesh of 300 elements.

The maximum of the pointwise difference between the concentration and non-local concentration fields,
maxx∈[0,2L]|c(x) − c̃(x)|, is used here as a measure of convergence to the CH solution. Fig. 2(a) shows the
convergence for different mesh sizes, at steady state, with increasing values of the penalty parameter. For both
coarse and fine meshes, an exponential reduction in the difference, from 3.6 × 10−1 to 6.8 × 10−4, is observed
on increasing the penalty parameter from 4.0 × 103 to 2.5 × 106 J mol−1. For the lowest penalty parameter used,
α = 4.0 × 103 J mol−1, the difference between concentration and non-local concentration is sensitive to the mesh
size, and varies from 0.3 to 0.36 for mesh sizes varying from 150 to 2400 elements. However, when the penalty
parameter is larger than 1.0 × 104 J mol−1, no distinguishable differences can be observed under different mesh
sizes. Fig. 2(b) presents the variation of the interface width, d, with increasing the penalty parameter. The interface
width converges to a constant value of 13 µm with minimal differences when the penalty parameter is larger than
1.0 × 105 J mol−1. It can be seen that for larger penalty parameters larger than 2.5 × 104 J mol−1, no distinguishable
changes appear under mesh refinement from 300 to 2400 elements, giving good evidence of spatial convergence of
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Fig. 2. Influence of the penalty parameter, α1, and mesh size on the numerical convergence and accuracy: (a) Convergence of the
concentration, c, to the non-local concentration, c̃, as a function of the penalty parameter, α1, ranging from 4 × 103 to 2.5 × 106 J mol−1, in
linear (round symbols) and log (square symbols) scale. (b) Relationship between the interface width and the penalty parameter at a constant
gradient coefficient κ1 = 1 × 10−16 J m2 mol−1. Schematic of the interface between binodal concentration cα and cβ is given in the inset.
The interface width d is defined as the distance where the concentration changes from 1.05cα to 0.95cβ .

Fig. 3. Variation of the CPU time as a function of the penalty parameter, α1.

the numerical solution. When the penalty parameter is smaller than 1.0×104 J mol−1, no spatial convergence of the
numerical solution is observed under mesh refinement. The convergence of the interface width in such studies is
a good indicator for choosing an appropriate penalty parameter. Furthermore, to study the influence of the penalty
parameter on the numerical efficiency, the variation of the CPU time spent on a single core of Intel Xeon Gold
6150 CPU 2.70 GHz with different penalty parameters is given in Fig. 3. It shows that the CPU time increases with
increasing the value of the penalty parameter. The above simulations indicate that the penalty parameter should be
chosen considering both the convergence of the numerical solution to the CH solution (Fig. 2(a)) and the numerical
cost (Fig. 3). For practical purposes, a penalty parameter of 1 × 105 J mol−1 was found to give a good balance
between convergence and numerical cost.

Fig. 4(a) shows the evolution of the maximum values of the concentration, indicating progress of the spinodal
decomposition, for solutions obtained using a time step of ∆t = 100 s, 20 s, 5 s and 2 s, respectively. While the large
time step, ∆t = 100 s, significantly delays the decomposition process implying insufficient temporal resolution,
the absence of visible differences between the solutions for ∆t = 5 s and 2 s indicates the convergence of the
microstructure as time steps are refined. Fig. 4(b) shows the evolution of the maximum values of the concentration,
for solutions corresponding to meshes with 60, 90, 150, 300 and 600 elements. Similar with the results in Fig. 2(b),
no distinguishable differences can be observed beyond refinement from a mesh size of 300 elements, indicating the
spatial convergence of the numerical solutions under mesh refinement.
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Fig. 4. Influence of the time steps and mesh size on the numerical convergence and accuracy: evolution of the maximum values of the
concentration during the spinodal decomposition process where (a) time steps varying from 100 s to 2 s and (b) the mesh size varying from
60 to 600 elements.

Fig. 5. Interface width squared, l2, as a function of the gradient coefficient, κ1 varying from 1 × 10−17 to 1 × 10−15 J m2 mol−1, obtained
from simulations (round symbols with 300 elements and triangle symbols with 2400 elements) and compared with the ideal Cahn–Hilliard
scaling (line).

The convergence of the proposed method is also characterised by investigating the relationship between the
gradient coefficient, κm , and the interface width, d . Based on the classical CH theory [28], the gradient coefficient
should have quadratic relationship with the interface width. Fig. 5 shows the simulated interface width squared
as a function of the gradient coefficient at steady state. The gradient coefficient κ1 varies from 1 × 10−17 to
1 × 10−15 J m2 mol−1. Note that for each simulation, the penalty parameter is chosen large enough to guarantee
that the interface width converges to the constant value as discussed above. Fig. 5 verifies the linear relationship
between the interface width squared and the gradient coefficient in both cases with coarse and fine meshes (300
and 2400 meshes, respectively), and shows that the penalty parameter does not affect the simulation results when
it is sufficiently large. In the case with a mesh size with 300 elements, only a few points slightly deviate from the
linear relationship. The above results indicate that the numerical solutions of the proposed approach converges to
the CH solution, and the interface width is controlled solely by the physical parameters of the gradient coefficient,
κm , for a sufficiently large penalty parameter, and guidelines for choosing the penalty parameter are provided.

4.1.2. Numerical performance
In this section, the accuracy and performance of the proposed numerical approach is compared to a conventional

mixed FE CH solution scheme. A two-dimensional spinodal decomposition example in the absence of mechanical
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Fig. 6. Spinodal decomposition of a homogeneous solid solution with initial concentration of 0.5 and random perturbation of amplitude 0.1
at (1) 1 s, (2) 500 s, (3) 1000 s, and (4) 1800 s. The numerical implementations of the transport relations is based on (a) the concentration
field and (b) the chemical potential field, respectively.

Fig. 7. Evolution of the maximum (red) and minimum (black) values of the concentration during the spinodal decomposition process obtained
from classical (squares) and proposed (circles) numerical approaches, respectively.

deformation is solved to compare the two solution schemes. The model parameters used are as follows: Ω =

1 × 10−5 m3 mol−1, E sol
1 = 2 × 104 J mol−1, E int

11 = −5 × 104 J mol−1, Rθ = 0.1 × 104 J mol−1, κ1 = 1 ×

10−16 J m2 mol−1,Mm = 1.0 × 10−22 m5 s−1 J−1, α1 = 5 × 105 J mol−1. A square domain, B0 = [0, L] × [0, L], of
size L = 0.8 µm is meshed with 80 × 80 regular hexahedral elements. The initial concentration is taken as 0.5
with a random perturbation of amplitude 0.1.

Fig. 6 shows the temporal evolution of the concentration field during spinodal decomposition, starting from a
homogeneous mixture with an average concentration of 0.5 and random perturbation with an amplitude of 0.1,
into two spinodal compositions of 1.0 × 10−4 and 9.9 × 10−1, determined by the minima of the free energy, ψ .
Negligible differences in the concentration fields between the two solution approaches are observed. In order to
quantitatively compare the simulation results, Fig. 7 shows the evolution of the maximum and minimum values of
the concentration during the spinodal decomposition process, with spinodal decomposition initiating at 500 s. It can
be seen that the simulated results for these two different approaches completely overlap during the entire spinodal
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Fig. 8. Comparison of the (a) number of the Newton iterations per increment for convergence and (b) the overall CPU time during the
simulation process to solve the direct (black lines) and the inverted (red lines) transport relations for three different time steps, 2.0 s, 1.0 s
and 0.5 s.

decomposition process, thus validating the accuracy of the proposed numerical approach as a function of chemical
potentials.

In order to compare the numerical performance of the two numerical approaches, the same Newton–Raphson
scheme is used in the above simulations. The number of iterations required to obtain the solution for the nonlinear
Newton–Raphson solver at each time step and the total CPU time spent on a single core of AMD Ryzen 3 PRO 1200
Quad-Core Processor 3.10 GHz during the spinodal decomposition process is used to quantify the performance and
efficiency of the numerical scheme. The number of Newton iterations and the total CPU time for both approaches
during the calculations is shown in Fig. 8. For all the time steps used in the numerical calculations (0.5 s, 1.0 s, 2.0 s),
the number of Newton iterations required for the proposed solution method (2–4 iterations) is significantly lower
than the number of Newton iterations required for the conventional mixed FE solution method (16–26 iterations). As
shown in Fig. 8(b), the overall computation cost of the proposed method is much less and falls about 3 times below
that of the corresponding conventional method. With decreasing the time step from 2.0 s to 0.5 s, the average number
of the Newton iterations required for the conventional mixed FE solution method decreases from 21 to 16 iterations.
Correspondingly, the number of the Newton iterations required for the proposed solution method only shows a
decrease from 3 to 2 iterations at the beginning of the simulation process. In general, the proposed method requires
3 iterations on average and is almost independent on the time steps in the range of the time steps sizes used in the
current simulations. Although the refinement of the time step does not lead to the obvious decrease of the number
of the Newton iterations in the proposed scheme, the required Newton iterations and the numerical computation
cost are still substantially lower comparing to the direct transport relations. These comparisons demonstrate the
significantly improved performance and efficiency of the proposed inverted numerical scheme based on the chemical
potentials.

4.2. Chemo-mechanical coupling

In this section, the chemical diffusion model is coupled to a finite-strain mechanical model to study the role of
mechanical deformation on the spinodal decomposition process. Both elastic and plastic deformation accompanying
diffusion are considered in the simulations. The material parameters for the chemical energy and crystal plasticity
model are listed in Table 1. To illustrate the effect of mechanical deformation, through the deformation arising
from volumetric mismatch between solute components, Fc in Eq. (20), on the free energy of the system, Fig. 1
shows the free energy of a 1-D system with various values of the solute volumetric mismatch coefficient. Note that
in this plot, it is assumed that the local deformation arising from volumetric mismatch among solute components
can only be accommodated by elastic deformation. It can be seen, that in terms of kinetics, the driving force for
spinodal decomposition decreases with increasing levels of volumetric mismatch. From an energetic point of view,
the miscibility gap is also modified, with the solute-poor binodal being more energetically favoured.

A square domain, B0 = [0, L] × [0, L], of size L = 2.56 µm is meshed with 256 × 256 regular hexahedral
elements. Periodic boundary conditions on both concentrations and displacements were applied. The temporal
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Table 1
Chemo-mechanical material parameters for the binary spinodal system. Ω is the molar volume, E sol

1 is the component solution energy, E int
11

is the component interaction energy, θ is the temperature, κ1 is the gradient coefficient, α1 is the penalty parameter, M1 is the component
mobility, γ̇0 is the reference shear rate, n is the strain-rate sensitivity exponent, g0 and g∞ are the initial and asymptotic slip resistances,
and h0 and hαβ are hardening parameters.

Chemical energy Ω (m3 mol−1) E sol
1 (J mol−1) E int

11 (J mol−1) θ (K)

1 × 10−5 1.24 × 104
−1.24 × 104 498

κ1 (J m2 mol−1) α1 (J mol−1) M1 (m5 s−1 J−1)

2.5 × 10−17 5 × 105 2.2 × 10−22

Crystal plasticity model γ̇0 (s−1) n g0 (MPa) g∞ (MPa) a

1 × 10−3 20 31 63 2.25

h0 (MPa) Coplanar hαβ (MPa) Non-coplanar hαβ (MPa)

75 1 1.4

Elastic constants C11 (Pa) C12 (Pa) C44 (Pa)

1.06 × 1011 6.0 × 1010 2.8 × 1010

evolution of the concentration field during the spinodal decomposition process, in the absence of mechanical
deformation (i.e. setting ν1 = 0.00), is shown in Fig. 9(a). At the early stage of the spinodal decomposition, the initial
homogeneous mixture decomposes into two regions with different compositions, following their corresponding
composition branch on the generalised multi-well Landau energy landscape Fig. 9(a1). The decomposition stage
is driven by the minimisation of the chemical free energy. Following decomposition, capillary-driven coarsening
can be observed from Fig. 9(a2) to (a4), which is driven by the minimisation of interface energy, that occurs at a
longer time scale compared to the initial decomposition stage.

The effect of the volumetric mismatch between solute components on spinodal decomposition and coarsening is
investigated by first considering the case of an elastically deforming material. The volumetric mismatch coefficient,
ν1, is varied between 0.01 and 0.05, and the material parameters used are listed in Table 1. The temporal evolution
of the concentration field during spinodal decomposition is shown in Fig. 9(b) to (d). It can be seen that the
decomposition is minimally affected when the solute induced deformation is relatively small (i.e., ν1 = 0.01),
comparing Fig. 9(a) and (b). However, as the volumetric mismatch coefficient increases, the spinodal decomposition
kinetics is significantly reduced, as shown in Fig. 9(c) and (d). This is due to the increasing elastic energy
contribution to the driving force, which has the effect of suppressing the spinodal decomposition (Fig. 1). The
binodal compositions are also affected by the chemo-mechanical coupling, with the solute-rich binodal point
decreasing from 0.93 to 0.82 when the volumetric mismatch coefficient increases up to 0.05. Furthermore, one
can observe that the morphology of the solute-rich region is also affected by the deformation arising from
volumetric mismatch between solute components, comparing Fig. 9(a) and (d). In the absence of mechanical
coupling, the solute-rich regions exhibit a spherical morphology due to the isotropic nature of the interface energy
(Fig. 9(a4)), but with increasing volumetric mismatch between solute components, the solute-rich regions are
observed to order themselves along the softer directions of the cubically anisotropic elastic stiffness tensor used here
(Fig. 9(d4)).

To our knowledge, the numerical investigations of spinodal decomposition, presented in the literature, are
limited to the coupling of elastic deformation with diffusion. The capability of the developed chemo-mechanical
model allows us to also explore the more challenging influence of elasto-plasticity on the spinodal decomposition
and coarsening, which is observed in materials applications such as rafting in superalloys [59] and hydride
formation [60]. Parameters used for the crystal plasticity model are listed in Table 1.

The temporal evolution of the concentration field during spinodal decomposition on an elastic–plastically
deforming material is shown in Fig. 10. Comparing Figs. 9 and 10 reveals that visco-plastic relaxation significantly
affects the decomposition process. Spinodal decomposition is observed at 6000 s in the plastic material (Fig. 10(c3))
compared to 10 000 s in the elastic material (Fig. 9 d4), for the largest volumetric mismatch coefficient considered.
In addition, the binodal compositions are close to those obtained from the simulations in the absence of mechanical
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Fig. 9. Spinodal decomposition and coarsening (a) without volumetric mismatch between solute components, and with elastic accommodation
of the volumetric mismatch between solute components, for mismatch strain coefficients of (b) ν1 = 0.01, (c) ν1 = 0.03, and (d) ν1 = 0.05,
at time (1) 500 s, (2) 800 s, (3) 6000 s, and (4) 10 000 s.

deformation, since the deformation arising from volumetric mismatch between solute components can be effectively
relaxed by the plastic deformation.

Fig. 11 presents the evolution of the hydrostatic stress and plastic strain for the cases with elastic-only and elasto-
plastic deformation at a volumetric mismatch coefficient of 0.03. The plastic deformation relaxes the hydrostatic
stress generated due to solute agglomeration during spinodal decomposition, and thus dissipates a significant portion
of the stored elastic energy. The plastic strain localisation surrounding the solute-rich regions is observed, with a
maximum value of 0.6. More interestingly, even though the spinodal compositions are similar to the case without
mechanical deformation, the morphology of the solute-rich region differs significantly. When considering elasto-
plastic deformation, the solute-rich regions exhibit an elliptic morphology at the intermediate level of volumetric
misfit, as shown in Fig. 10(b4). At the high levels of volumetric misfit, the solute-rich regions merge together and
multiple lamellar regions can be observed, as shown in Fig. 10(c4).

4.3. Ternary chemo-mechanical spinodal decomposition

In order to illustrate the applicability of the modelling approach to more complex material systems, a large
three-dimensional (3D) simulation of a chemo-mechanically coupled ternary spinodal decomposition and coarsening
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Fig. 10. Spinodal decomposition and coarsening with elasto-viscoplastic accommodation of the deformation due to the volumetric mismatch
between solute components, for mismatch strain coefficients of, (a) ν1 = 0.01, (b) ν1 = 0.03, and (c) ν1 = 0.05, at time (1) 500 s, (2)
800 s, (3) 6000 s, and (4) 10 000 s.

Table 2
Chemical free energy parameters for the ternary spinodal system. Ω is the molar volume; E sol

A and E sol
B are the

solution energies, κA and κB are the gradient coefficients, αA and αB are the penalty parameters, and MA and
MB are the mobilities for component A and B respectively; E int

AA and E int
AB are the A − A and A − B interaction

energies; and θ is the temperature.

Parameter Value Parameter Value

Ω 1 × 10−5 (m3 mol−1) κA 1 × 10−18 (J m2 mol−1)

E sol
A 1.24 × 104 (J mol−1) κB 1 × 10−18 (J m2 mol−1)

E sol
B 1.24 × 104 (J mol−1) αA 1 × 105 (J mol−1)

E int
AA −1.24 × 104 (J mol−1) αB 1 × 105 (J mol−1)

E int
AB −1.24 × 104 (J mol−1) MA 2.2 × 10−19 (m5 s−1 J−1)

θ 498 (K) MB 2.2 × 10−19 (m5 s−1 J−1)

process is considered next. The cubic domain, B0 = [0, L] × [0, L] × [0, L], of size L = 1.28 µm is meshed
with 128 × 128 × 128 regular hexahedral elements. The initial concentrations for solute A and B are 0.3 and
0.3, respectively, with a random perturbation of amplitude 0.01. The chemical free energy parameters are listed in
Table 2, and the crystal plasticity material parameters are listed in Table 1. The chemical free energy parameters
used will result in the formation of three decomposition regimes: (A-rich, B-poor), (A-poor, B-rich), and (A-poor,
B-poor).

Fig. 12 shows the temporal evolution of the morphologies of different decomposition regimes, the accompanying
hydrostatic stress, and the plastic strain. In this fully coupled 3D ternary spinodal-elastic-viscoplastic mechanical
decomposition simulation, the separated regions exhibit inter-connected morphologies instead of the isolated islands
like those in the 2D binary cases, as the three components have relatively the same concentrations (0.3, 0.3, 0.4),
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Fig. 11. Evolution of the hydrostatic stress during spinodal decomposition with (a) elastic, and (b) elasto-viscoplastic accommodation of
the deformation due to the volumetric mismatch between solute components, and (c) the corresponding evolution of the plastic strain, for a
mismatch strain coefficients of ν1 = 0.03, at time (1) 500 s, (2) 800 s, (3) 6000 s, and (4) 10 000 s.

close to the off-critical point. The hydrostatic stress distribution is significantly heterogeneous, even inside the same
decomposition region, due to the accompanying plastic deformation, as shown in Fig. 12(b). It can be seen that the
magnitude of the hydrostatic stress only changes slightly during the phase coarsening stage, while the total plastic
strain increases gradually (Fig. 12(c)).

The corresponding 3D simulations of the ternary spinodal decomposition in the absence of mechanical de-
formation and only considering elastic deformation are presented in Fig. 13. Comparing Figs. 12(a) and 13, the
separated regions produced by these three simulations exhibit qualitatively similar inter-connected morphologies.
The approach of [61] could be used to quantify and distinguish the geometrical differences between these
complicated patterns, however, a full discussion is beyond the scope of the current work and represents work in
progress to be reported in the future.

5. Conclusions and outlook

In this work, a numerical approach has been introduced, using a semi-implicit convex splitting to invert the
multi-component chemical potential relations, and resulting in a numerically advantageous expression for their
transport in terms of the chemical potential. The approach is validated using a generalised spinodal Landau-type
system as a benchmark, exposed to different chemo-mechanical starting and boundary conditions. A convergence
of the proposed weakly non-local approach to the strong CH form is demonstrated with increasing values of the
penalty parameter. However, for practical purposes, a penalty parameter of 1 × 105 J mol−1 was found to give
sufficiently converged results. A significant reduction of the numerical cost and stability of the proposed approach
is also demonstrated, allowing for the use of larger time steps in long-term diffusion simulations.

The influence of chemo-mechanical coupling, including both elastic and anisotropic crystalline plastic deforma-
tion, on the spinodal decomposition and coarsening process is also investigated. It is found that the stored elastic
energy can narrow the miscibility gap and alter the binodal compositions. The decomposition kinetics is significantly
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Fig. 12. Evolution of (a) the morphologies of the decomposition regions, (b) the hydrostatic stress, and (c) the plastic strain during a
ternary spinodal decomposition and coarsening process, in a crystalline anisotropic elasto-plastic deforming material, with a mismatch strain
coefficient of ν1 = 0.03, at time (1) 400 s, (2) 1000 s, (3) 6000 s, and (4) 15 000 s. The grey and yellow iso-surfaces represent (A-rich,
B-poor) and (A-poor, B-rich) regions respectively, within the (A-poor, B-poor) matrix. The concentrations of the iso-surfaces for both solute
A and B are taken as 0.9.

Fig. 13. Evolution of the spinodal decomposition and coarsening in a ternary spinodal decomposition and coarsening process, (a) without
volumetric mismatch between solute components, and (b) considering elastic accommodation of the volumetric mismatch between solute
components, with a volumetric mismatch coefficient of ν1 = 0.03, at time (1) 400 s, (2) 1000 s, (3) 6000 s, and (4) 15 000 s. The grey
and yellow iso-surfaces represent (A-rich, B-poor) and (A-poor, B-rich) decomposition regions respectively, and the rest is (A-poor, B-poor)
matrix. The concentrations of the iso-surfaces for both solute A and B are taken as 0.9.
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reduced with increasing volumetric mismatch between solute components. Furthermore, the morphology of the
solute-rich phase changes from spherical shape distributions to an ordered cubic distribution due to the anisotropy of
the elastic stiffness tensor. When taking in to account additional visco-plastic relaxation of the volumetric mismatch,
as in the case of realistic materials applications, it is found that the plastic relaxation accounts for a significant
amount of the dissipated total energy. The spinodal compositions are close to those in the absence of mechanical
deformation, but the solute-rich regions tend to coalesce into elongated lamellar morphologies.

Extension of the proposed approach to multi-phase systems is straightforward. This will be interesting as, in the
context of multiphase systems, working directly with the chemical potential lends itself naturally to the Kim-Kim-
Suzuki (KKS) description of interfaces [46], since, algorithmically, no partitioning of an average solute composition
into the individual phases is required. The proposed approach is also particularly amenable to CALPHAD-based
descriptions of the chemical energy [62], which is essential in the drive towards predictive simulations.
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